4,729 research outputs found

    Numerical simulations of kink instability in line-tied coronal loops

    Get PDF
    The results from numerical simulations carried out using a new shock-capturing, Lagrangian-remap, 3D MHD code, Lare3d are presented. We study the evolution of the m=1 kink mode instability in a photospherically line-tied coronal loop that has no net axial current. During the non-linear evolution of the kink instability, large current concentrations develop in the neighbourhood of the infinite length mode rational surface. We investigate whether this strong current saturates at a finite value or whether scaling indicates current sheet formation. In particular, we consider the effect of the shear, defined by where is the fieldline twist of the loop, on the current concentration. We also include a non-uniform resistivity in the simulations and observe the amount of free magnetic energy released by magnetic reconnection

    The triggering of MHD instabilities through photospheric footpoint motions

    Get PDF
    The results of 3D numerical simulations modelling the twisting of a coronal loop due to photospheric vortex motions are presented. The simulations are carried out using an initial purely axial field and an initial equilibrium configuration with twist, . The non-linear and resistive evolutions of the instability are followed. The magnetic field is twisted by the boundary motions into a loop which initially has boundary layers near the photospheric boundaries as has been suggested by previous work. The boundary motions increase the twist in the loop until it becomes unstable. For both cases the boundary twisting triggers the kink instability. In both cases a helical current structure wraps itself around the kinked central current. This current scales linearly with grid resolution indicating current sheet formation. For the cases studied 35-40% of the free magnetic energy is released. This is sufficient to explain the energy released in a compact loop flare

    The effect of poloidal velocity shear on the local development of current-driven instabilities

    Full text link
    We perform a local (short-wavelength) linear stability analysis of an axisymmetric column of magnetized plasma with a nearly toroidal magnetic field and a smooth poloidal velocity shear by perturbing the equations of relativistic magnetohydrodynamics. We identify two types of unstable modes, which we call 'exponential' and 'overstable', respectively. The exponential modes are present in the static equilibria and their growth rates decrease with increasing velocity shear. The overstable modes are driven by the effects of velocity shear and dominate the exponential modes for sufficiently high shear values. We argue that these local instabilities can provide an important energy dissipation mechanism in astrophysical relativistic jets. Strong co-moving velocity shear arises naturally in the magnetic acceleration mechanism, therefore it may play a crucial role in converting Poynting-flux-dominated jets into matter-dominated jets, regulating the global acceleration and collimation processes, and producing the observed emission of blazars and gamma-ray bursts.Comment: 8 pages, 5 figures, submitted to MNRA

    Kink instabilities in jets from rotating magnetic fields

    Full text link
    We have performed 2.5D and 3D simulations of conical jets driven by the rotation of an ordered, large-scale magnetic field in a stratified atmosphere. The simulations cover about three orders of magnitude in distance to capture the centrifugal acceleration as well as the evolution past the Alfven surface. We find that the jets develop kink instabilities, the characteristics of which depend on the velocity profile imposed at the base of the flow. The instabilities are especially pronounced with a rigid rotation profile, which induces a shearless magnetic field. The jet's expansion appears to be limiting the growth of Alfven mode instabilities.Comment: 10 pages, 13 figures, accepted for publication in A&

    Somatic mutations and clonal hematopoiesis in congenital neutropenia

    Get PDF
    © 2018 by The American Society of Hematology. Severe congenital neutropenia (SCN) and Shwachman-Diamond syndrome (SDS) are congenital neutropenia syndromes with a high rate of leukemic transformation. Hematopoietic stressors may contribute to leukemic transformation by increasing the mutation rate in hematopoietic stem/progenitor cells (HSPCs) and/or by promoting clonal hematopoiesis. We sequenced the exome of individual hematopoietic colonies derived from 13 patients with congenital neutropenia to measure total mutation burden and performed error-corrected sequencing on a panel of 46 genes on 80 patients with congenital neutropenia to assess for clonal hematopoiesis. An average of 3.6 ± 1.2 somatic mutations per exome was identified in HSPCs from patients with SCN compared with 3.960.4 for healthy controls (P = NS). Clonal hematopoiesis due to mutations in TP53 was present in 48% (13/ 27) of patients with SDS but was not seen in healthy controls (0/17, P \u3c .001) or patients with SCN (0/40, P \u3c .001). Our SDS cohort was young (median age 6.3 years), and many of the patients had multiple TP53 mutations. Conversely, clonal hematopoiesis due to mutations of CSF3R was present in patients with SCN but was not detected in healthy controls or patients with SDS. These data show that hematopoietic stress, including granulocyte colony-stimulating factor, do not increase the mutation burden in HSPCs in congenital neutropenia. Rather, distinct hematopoietic stressors result in the selective expansion of HSPCs carrying specific gene mutations. In particular, in SDS there is enormous selective pressure to expand TP53-mutated HSPCs, suggesting that acquisition of TP53 mutations is an early, likely initiating event, in the transformation to myelodysplastic syndrome/acute myeloid leukemia in patients with SDS

    The Kelvin-Helmholtz instability in weakly ionised plasmas II: multifluid effects in molecular clouds

    Full text link
    We present a study of the Kelvin-Helmholtz instability in a weakly ionised, multifluid MHD plasma with parameters matching those of a typical molecular cloud. The instability is capable of transforming well-ordered flows into disordered flows. As a result, it may be able to convert the energy found in, for example, bowshocks from stellar jets into the turbulent energy found in molecular clouds. As these clouds are weakly ionised, the ideal magnetohydrodynamic approximation does not apply at scales of around a tenth of a parsec or less. This paper extends the work of Jones & Downes (2011) on the evolution of the Kelvin-Helmholtz instability in the presence of multifluid magnetohydrodynamic effects. These effects of ambipolar diffusion and the Hall effect are here studied together under physical parameters applicable to molecular clouds. We restrict our attention to the case of a single shear layer with a transonic, but super-Alfvenic, velocity jump and the computational domain is chosen to match the wavelength of the linearly fastest growing mode of the instability. We find that while the introduction of multifluid effects does not affect the linear growth rates of the instability, the non-linear behaviour undergoes considerable change. The magnetic field is decoupled from the bulk flow as a result of the ambipolar diffusion, which leads to a significant difference in the evolution of the field. The Hall effect would be expected to lead to a noticeable re-orientation of the magnetic field lines perpendicular to the plane. However, the results reveal that the combination with ambipolar diffusion leads to a surprisingly effective suppression of this effect.Comment: 13 pages, 13 figures, accepted for publication in MNRA

    Patient-reported outcomes of periacetabular osteotomy from the prospective ANCHOR cohort study

    Get PDF
    BACKGROUND: Current literature describing the periacetabular osteotomy (PAO) is mostly limited to retrospective case series. Larger, prospective cohort studies are needed to provide better clinical evidence regarding this procedure. The goals of the current study were to (1) report minimum 2-year patient-reported outcomes (pain, hip function, activity, overall health, and quality of life), (2) investigate preoperative clinical and disease characteristics as predictors of clinical outcomes, and (3) report the rate of early failures and reoperations in patients undergoing contemporary PAO surgery. METHODS: A large, prospective, multicenter cohort of PAO procedures was established, and outcomes at a minimum of 2 years were analyzed. A total of 391 hips were included for analysis (79% of the patients were female, and the average patient age was 25.4 years). Patient-reported outcomes, conversion to total hip replacement, reoperations, and major complications were documented. Variables with a p value of ≤0.10 in the univariate linear regressions were included in the multivariate linear regression. The backward stepwise selection method was used to determine the final risk factors of clinical outcomes. RESULTS: Clinical outcome analysis demonstrated major clinically important improvements in pain, function, quality of life, overall health, and activity level. Increasing age and a body mass index status of overweight or obese were predictive of improved results for certain outcome metrics. Male sex and mild acetabular dysplasia were predictive of lesser improvements in certain outcome measures. Three (0.8%) of the hips underwent early conversion to total hip arthroplasty, 12 (3%) required reoperation, and 26 (7%) experienced a major complication. CONCLUSIONS: This large, prospective cohort study demonstrated the clinical success of contemporary PAO surgery for the treatment of symptomatic acetabular dysplasia. Patient and disease characteristics demonstrated predictive value that should be considered in surgical decision-making. LEVEL OF EVIDENCE: Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence

    Incorporating prior knowledge improves detection of differences in bacterial growth rate

    Get PDF
    BACKGROUND: Robust statistical detection of differences in the bacterial growth rate can be challenging, particularly when dealing with small differences or noisy data. The Bayesian approach provides a consistent framework for inferring model parameters and comparing hypotheses. The method captures the full uncertainty of parameter values, whilst making effective use of prior knowledge about a given system to improve estimation. RESULTS: We demonstrated the application of Bayesian analysis to bacterial growth curve comparison. Following extensive testing of the method, the analysis was applied to the large dataset of bacterial responses which are freely available at the web-resource, ComBase. Detection was found to be improved by using prior knowledge from clusters of previously analysed experimental results at similar environmental conditions. A comparison was also made to a more traditional statistical testing method, the F-test, and Bayesian analysis was found to perform more conclusively and to be capable of attributing significance to more subtle differences in growth rate. CONCLUSIONS: We have demonstrated that by making use of existing experimental knowledge, it is possible to significantly improve detection of differences in bacterial growth rate
    corecore